Affiliation:
1. Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
2. Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
Abstract
ABSTRACT
Metazoan Hedgehog (Hh) morphogens are essential regulators of growth and patterning at significant distances from their source, despite being produced as N-terminally palmitoylated and C-terminally cholesteroylated proteins, which firmly tethers them to the outer plasma membrane leaflet of producing cells and limits their spread. One mechanism to overcome this limitation is proteolytic processing of both lipidated terminal peptides, called shedding, but molecular target site requirements for effective Hh shedding remained undefined. In this work, by using Drosophila melanogaster as a model, we show that mutagenesis of the N-terminal Cardin–Weintraub (CW) motif inactivates recombinant Hh proteins to variable degrees and, if overexpressed in the same compartment, converts them into suppressors of endogenous Hh function. In vivo, additional removal of N-palmitate membrane anchors largely restored endogenous Hh function, supporting the hypothesis that proteolytic CW processing controls Hh solubilization. Importantly, we also observed that CW repositioning impairs anterior/posterior compartmental boundary maintenance in the third instar wing disc. This demonstrates that Hh shedding not only controls the differentiation of anterior cells, but also maintains the sharp physical segregation between these receiving cells and posterior Hh-producing cells.
Funder
Deutsche Forschungsgemeinschaft
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献