Two-way Dispatched function in Sonic hedgehog shedding and transfer to high-density lipoproteins

Author:

Ehring K.,Ehlers S.F.,Froese J.,Gude F.,Puschmann J.,Grobe K.ORCID

Abstract

SummaryThe Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We previously showed that Disp enhances proteolytic Shh solubilization from its lipidated terminal peptide anchors. This process, called shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as soluble sinks for free membrane cholesterol, HDLs also accept the cholesterolmodified Shh peptide from Disp. The cholesteroylated Shh peptide is required and sufficient for Disp-mediated transfer because mCherry linked to cholesteroylated peptides associates with HDL in a Disp-dependent manner, but an N-palmitoylated Shh variant that lacks C-cholesterol does not. Disp-mediated Shh transfer to HDL is finalized by proteolytic processing of the palmitoylated N-terminal membrane anchor. Unlike dual processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We suggest that the purpose of different post-translationally modified soluble Shh forms generated from one dual-lipidated cellular precursor is to fine-tune cellular responses in a tissue type-specific and time-specific manner.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3