Interaction of the interferon-induced PKR protein kinase with inhibitory proteins P58IPK and vaccinia virus K3L is mediated by unique domains: implications for kinase regulation

Author:

Gale M1,Tan S L1,Wambach M1,Katze M G1

Affiliation:

1. Department of Microbiology, School of Medicine, University of Washington, Seattle 98195, USA.

Abstract

Expression of the double-stranded RNA-activated protein kinase (PKR) is induced by interferons, with PKR activity playing a pivotal role in establishing the interferon-induced antiviral and antiproliferative states. PKR is directly regulated by physical association with the specific inhibitor, P58IPK, a cellular protein of the tetratricopeptide repeat (TPR) family, and K3L, the product of the corresponding vaccinia virus gene. P58IPK and K3L repress PKR activation and activity. To investigate the mechanism of P58IPK- and K3L-mediated PKR inhibition, we have used a combination of in vitro and in vivo binding assays to identify the interactive regions of these proteins. The P58IPK-interacting site of PKR was mapped to a 52-amino-acid aa segment (aa 244 to 296) spanning the ATP-binding region of the protein kinase catalytic domain. The interaction with PKR did not require the C-terminal DNA-J homology region of P58IPK but was dependent on the presence of the eukaryotic initiation factor 2-alpha homology region, mapping to the 34 aa within the sixth P58IPK TPR motif. Consistent with other TPR proteins, P58IPK formed multimers in vivo: the N-terminal 166 aa were both necessary and sufficient for complex formation. A parallel in vivo analysis to map the K3L-binding region of PKR revealed that like P58IPK , K3L interacted exclusively with the PKR protein kinase catalytic domain. In contrast, however, the K3L-binding region of PKR was localized to within aa 367 to 551, demonstrating that each inhibitor bound PKR in unique, nonoverlapping domains. These data, taken together, suggest that P58IPK and K3L may mediate PKR inhibition by distinct mechanisms. Finally, we will propose a model of PKR inhibition in which P58IPK or a P58IPK complex binds PKR and interferes with nucleotide binding and autoregulation, while formation of a PKR-K3L complex interferes with active-site function and/or substrate association.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3