Neuronal p58IPK Protects Retinal Ganglion Cells Independently of Macrophage/Microglia Activation in Ocular Hypertension

Author:

McLaughlin Todd1,Wang Jinli1ORCID,Jia Liyun12,Wu Fuguo1,Wang Yaqin13,Wang Joshua J.1,Mu Xiuqian14ORCID,Zhang Sarah X.14

Affiliation:

1. Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA

2. Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China

3. Taihe Hospital, Hubei University of Medicine, Shiyan 442005, China

4. Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14203, USA

Abstract

p58IPK is a multifaceted endoplasmic reticulum (ER) chaperone and a regulator of eIF2α kinases involved in a wide range of cellular processes including protein synthesis, ER stress response, and macrophage-mediated inflammation. Systemic deletion of p58IPK leads to age-related loss of retinal ganglion cells (RGC) and exacerbates RGC damage induced by ischemia/reperfusion and increased intraocular pressure (IOP), suggesting a protective role of p58IPK in the retina. However, the mechanisms remain elusive. Herein, we investigated the cellular mechanisms underlying the neuroprotection action of p58IPK using conditional knockout (cKO) mouse lines where p58IPK is deleted in retinal neurons (Chx10-p58IPK cKO) or in myeloid cells (Lyz2-p58IPK cKO). In addition, we overexpressed p58IPK by adeno-associated virus (AAV) in the retina to examine the effect of p58IPK on RGC survival after ocular hypertension (OHT) in wild type (WT) mice. Our results show that overexpression of p58IPK by AAV significantly improved RGC survival after OHT in WT mice, suggesting a protective effect of p58IPK on reducing RGC injury. Conditional knockout of p58IPK in retinal neurons or in myeloid cells did not alter retinal structure or cellular composition. However, a significant reduction in the b wave of light-adapted electroretinogram (ERG) was observed in Chx10-p58IPK cKO mice. Deletion of p58IPK in retinal neurons exacerbates RGC loss at 14 days after OHT. In contrast, deficiency of p58IPK in myeloid cells increased the microglia/macrophage activation but had no effect on RGC loss. We conclude that deletion of p58IPK in macrophages increases their activation, but does not influence RGC survival. These results suggest that the neuroprotective action of p58IPK is mediated by its expression in retinal neurons, but not in macrophages. Therefore, targeting p58IPK specifically in retinal neurons is a promising approach for the treatment of neurodegenerative retinal diseases including glaucoma.

Funder

BrightFocus Foundation

National Eye Institute

Department of Ophthalmology, the State University of New York at Buffalo

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3