Analysis of Virulence and Inflammatory Potential of Shigella flexneri Purine Biosynthesis Mutants

Author:

Cersini Antonella1,Martino Maria Celeste1,Martini Irene1,Rossi Giacomo2,Bernardini Maria Lina1

Affiliation:

1. Dipartimento di Biologia Cellulare e dello Sviluppo, Sezione di Scienze Microbiologiche, Università La Sapienza, 00185 Rome

2. Facoltà di Medicina Veterinaria, Università di Camerino, 62032 Matelica, Italy

Abstract

ABSTRACT Several Shigella flexneri mutants with defects in aromatic amino acid and/or purine biosynthesis have been evaluated as vaccines in humans or in animal models. To be suitable as a vaccine, a mutant has to show virulence attenuation, minimal reactogenicity, and a good immunogenic potential in animal models. With this aim, we have constructed five S. flexneri 5 (wild-type strain M90T) mutants with inactivation of one or two of the loci purEK , purHD , and guaBA , governing early or late steps of purine biosynthesis. The mutants have been analyzed in vitro in cell cultures and in vivo in the Sereny test and in the murine pulmonary model of shigellosis. M90T guaBA , M90T guaBA purEK , M90T guaBA purHD , and M90T purHD purEK gave a negative result in the Sereny test. In contrast, in the murine pulmonary model all of the strains had the same 50% lethal dose as the wild type, except M90T guaBA purHD , which did not result in death of the animals. Nevertheless, bacterial counts in infected lungs, immunohistochemistry, and reverse transcription-PCR analysis of mRNAs for tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-12, and inducible nitric oxide synthase (iNOS) revealed significant differences among the strains. At 72 h postinfection, M90T guaBA purHD still induced proinflammatory cytokines and factors such as IL-1β, IL-6, TNF-α, and iNOS, along with cytokines such as IL-12 and IFN-γ. Moreover, in the absence of evident lesions in murine tissues, this mutant highly stimulated major histocompatibility complex class II expression, showing a significant ability to activate the innate immunity of the host.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3