Effect of glutamine on enzymes of nitrogen metabolism in Bacillus subtilis

Author:

Deshpande K L,Katze J R,Kane J F

Abstract

An earlier study of the regulation of glutamate synthase (GOGAT) in Bacillus subtilis (Deshpande et al., Bichem. Biophys. Res. Commun. 95:55--60, 1980) revealed an inverse relationship between the specific activity of this essential ammonia-assimilatory enzyme and the intracellular pool of glutamine: GOGAT activity decreased when the internal glutamine concentration reached or exceeded 2.5 mM. This finding prompted the present investigation of the intracellular events linking glutamine formation to the regulation of GOGAT. A growing culture of B. subtilis was shifted from glutamate plus NH+4 medium (high GOGAT activity) to glutamate medium (low GOGAT activity). At various times after the shift, the intracellular concentrations of aspartate, glutamate, glutamine, alanine, and NH+4 and the activities of GOGAT and glutamine synthetase (GS) were measured. After 30 min, the only significant pool level change was an eightfold increase in glutamine, which paralleled a 2- to 3-fold increase in GS activity. Approximately 15 min after the glutamine pool reached its peak, GOGAT activity began to decrease and eventually declined 2.5-fold. In contrast, when B. subtilis was shifted from glutamate medium to glutamate plus NH+4 medium, there was a 1- to 2-h lag before the glutamine pool and GS activity approached a steady state. As a result, GOGAT activity was low until the concentration of glutamine dropped below 2.5 mM. We propose that glutamine is an important regulatory element in the control of GOGAT activity and that one form of GOGAT regulation involves enzyme inactivation. In addition, these results indicate that glutamine is neither a corepressor nor a feedback inhibitor of GS.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3