Affiliation:
1. Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
Abstract
ABSTRACT
The bacterial pathogen
Listeria monocytogenes
causes food-borne illnesses leading to gastroenteritis, meningitis, or abortion.
Listeria
induces its internalization into some mammalian cells through interaction of the bacterial surface protein InlB with host Met receptor tyrosine kinase. Binding of InlB leads to phosphorylation of Met and the adapter Gab1 and to activation of host phosphoinositide (PI) 3-kinase. The mammalian ligand of Met, hepatocyte growth factor, promotes cell motility and morphogenesis in a manner dependent on phosphorylation of two docking site tyrosines at positions 1349 and 1356 in the receptor's cytoplasmic tail. Here we determined if these tyrosines were essential for
Listeria
entry. A derivative of the human cell line T47D stably expressing a truncated Met lacking most of its cytoplasmic domain was unable to support InlB-mediated signaling or entry. Surprisingly, cells expressing mutant Met containing phenylalanine substitutions in both tyrosines 1349 and 1356 (MetYF) allowed entry and InlB-induced Gab1 phosphorylation. However, in contrast to the situation in cells expressing wild-type Met, Gab1 phosphorylation in MetYF cells required PI 3-kinase activity. The Gab1 pleckstrin homology (PH) domain was constitutively associated with the plasma membrane of cells in a PI 3-kinase-dependent manner. Overexpression of the PH domain blocked entry of
Listeria
into cells expressing MetYF but not into cells expressing wild-type Met. Taken together, these results indicate that the docking site tyrosines are dispensable for internalization when membrane localization of Gab1 is constitutive. Distinct pathways of recruitment by phosphorylated tyrosines in Met and PH domain ligands in the membrane are redundant for bacterial entry.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Reference48 articles.
1. Bardelli, A., P. Longati, D. Gramaglia, M. C. Stella, and P. M. Comoglio. 1997. Gab1 coupling to the HGF/Met receptor multifunctional docking site requires binding of Grb2 and correlates with the transforming potential. Oncogene15:3103-3111.
2. Bierne, H., E. Gouin, P. Roux, P. Caroni, H. L. Yin, and P. Cossart. 2001. A role for cofilin and LIM kinase in Listeria-induced phagocytosis. J. Biol. Chem.155:101-112.
3. Birchmeier, C., W. Birchmeier, E. Gherardi, and G. F. Vande Woude. 2003. Met, metastasis, motility, and more. Nat. Rev. Mol. Cell Biol.4:915-925.
4. Birchmeier, C., and E. Gherardi. 1998. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol.8:404-410.
5. Braun, L., H. Ohayon, and P. Cossart. 1998. The InIB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells. Mol. Microbiol.27:1077-1087.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献