Relationship between Vaccine-Induced Antibody Capture of Infectious Virus and Infection Outcomes following Repeated Low-Dose Rectal Challenges with Simian Immunodeficiency Virus SIVmac251

Author:

Gach Johannes S.1,Venzon David2,Vaccari Monica3,Keele Brandon F.4,Franchini Genoveffa3,Forthal Donald N.1

Affiliation:

1. Division of Infectious Diseases, Departments of Medicine and Molecular Biology & Biochemistry, University of California, Irvine, California, USA

2. Biostatistics and Data Management Section, National Cancer Institute, Bethesda, Maryland, USA

3. Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA

4. AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA

Abstract

ABSTRACT Antibodies are known to enhance in vitro infection by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). We measured the ability of antibodies induced by ALVAC-SIV/gp120 vaccination, given with alum or MF59 adjuvant, to capture infectious SIVmac251 and determined the association between capture and infection outcomes following low-dose, repeated rectal challenge of rhesus macaques. We found that capture correlated with the number of transmitted/founder (T/F) variants that established infection, such that animals whose plasma captured more virus were infected with a higher number of T/F strains. Capture also correlated with results of Env binding assays, indicating that greater immunogenicity resulted in greater capture. Although vaccination elicited negligible neutralizing activity against the challenge strain (50% inhibitory dilutions of >1/80 in all cases), animals with low capture and whose plasma, at a fixed dilution, inhibited a higher fraction of virus were infected at a lower rate than animals with high capture and low neutralization ( P = 0.039); only animals with the low capture/high neutralization response profile were protected compared with unvaccinated control animals ( P = 0.026). In a sieve analysis, high capture and low capture were distinguishable on the basis of polymorphisms in the V1 loop of Env at amino acids 144 and 145. Our results indicate that vaccine-induced antibody that binds to and captures infectious virus but does not inhibit its infectivity may enhance the likelihood of infection following rectal challenge with SIVmac251. Higher immunogenicity resulting in better antibody capture but similar anti-infectivity may not improve vaccine efficacy. IMPORTANCE Vaccines generally prevent viral infections by eliciting antibodies that inhibit virus infectivity. However, antibodies, including those induced by vaccination, have the potential to enhance, rather than prevent infection. We measured the ability of vaccine-induced antibodies to capture infectious simian immunodeficiency virus (SIV) and explored the relationship between virus capture and infection outcomes. We found that capture correlated with the number of SIV variants that established infection, such that animals whose plasma captured more virus were infected with a higher number of unique strains. In addition, animals whose sera had high capture but weak anti-infectivity activity were infected at a higher rate than were animals with low capture and stronger anti-infectivity activity. These results suggest that vaccines that induce antibodies that bind to and capture infectious virus but do not inhibit virus infectivity will not be effective in preventing infection.

Funder

HHS | NIH | National Cancer Institute

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3