Coxiella burnetii Interaction with Neutrophils and Macrophages In Vitro and in SCID Mice following Aerosol Infection

Author:

Elliott Alexandra1,Peng Ying1,Zhang Guoquan1

Affiliation:

1. Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri—Columbia, Columbia, Missouri, USA

Abstract

ABSTRACT Coxiella burnetii is an obligate intracellular bacterium that causes acute and chronic Q fever in humans. Human Q fever is mainly transmitted by aerosol infection. However, there is a fundamental gap in the knowledge regarding the mechanisms of pulmonary immunity against C. burnetii infection. This study focused on understanding the interaction between C. burnetii and innate immune cells in vitro and in vivo . Both virulent C. burnetii Nine Mile phase I (NMI) and avirulent Nine Mile phase II (NMII) were able to infect neutrophils, while the infection rates were lower than 29%, suggesting that C. burnetii can infect neutrophils, but infection is limited. Interestingly, C. burnetii inside neutrophils can infect and replicate within macrophages, suggesting that neutrophils cannot kill C. burnetii and C. burnetii may be using infection of neutrophils as an evasive strategy to infect macrophages. To elucidate the mechanisms of the innate immune response to C. burnetii natural infection, SCID mice were exposed to aerosolized C. burnetii . Surprisingly, neutrophil influx into the lungs was delayed until day 7 postinfection in both NMI- and NMII-infected mice. This result suggests that neutrophils may play a unique role in the early immune response against aerosolized C. burnetii . Studying the interaction between C. burnetii and the innate immune system can provide a model system for understanding how the bacteria evade early immune responses to cause infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3