Characterization of an Endoglucanase from Pseudomonas fluorescens subsp. cellulosa Produced in Escherichia coli and Regulation of the Expression of Its Cloned Gene

Author:

Lejeune André1,Courtois Stéphane1,Colson Charles1

Affiliation:

1. Unité de Génétique, Université Catholique de Louvain, Place Croix du Sud 4 (bte 3), B-1348 Louvain-la-Neuve, Belgium

Abstract

Several enzymatic properties of an endoglucanase produced in Escherichia coli by a gene from Pseudomonas fluorescens subsp. cellulosa were investigated. Gel filtration revealed a single peak of M r 36,000 with endoglucanase activity. The pH optimum of the enzyme was 7.0. Carboxymethyl cellulose and barley β-glucan (mixed β-1,3 and 1,4 linkages) were good substrates, but not laminarin (β-1,3 linkages), amylose, filter paper, microcrystalline cellulose (Avicel), or cellotriose. The mode of action was typical of an “endo”-acting enzyme. Taken together, these properties do not correspond to those of any of the endoglucanases described in P. fluorescens subsp. cellulosa . Consequently, the gene was designated egIX . The enzyme was sensitive to end-product inhibition by cellobiose but was only moderately inhibited by glucose. The enzyme was formed constitutively in E. coli throughout the growth phase. Urea had no effect on endoglucanase synthesis, but glucose acted as a catabolite repressor. The formation of the enzyme in E. coli was partially dependent on cyclic AMP.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3