Prediction, enrichment and isolation identify a responsive, competitive community of cellulolytic microorganisms from a municipal landfill

Author:

Co Rebecca1,Hug Laura A1ORCID

Affiliation:

1. Dapartment of Biology, University of Waterloo, 200 University Ave, Waterloo, ON, N2L3G1, Canada

Abstract

ABSTRACT Landfills are engineered, heterogeneously contaminated sites containing large reservoirs of paper waste. Cellulose degradation is an important process within landfill microbial ecology, and these anoxic, saturated environments are prime locations for discovery of cellulases that may offer improvements on industrial cellulose degradation efforts. We sampled leachate from three locations within a municipal landfill, a leachate collection cistern, and groundwater from an adjacent aquifer to identify cellulolytic populations and their associated cellulases. Metagenomic sequencing identified wide-spread and taxonomically diverse cellulolytic potential, with a notable scarcity of predicted exocellulases. 16S rRNA amplicon sequencing detected nine landfill microorganisms enriched in a customized leachate medium amended with microcrystalline cellulose or common paper stocks. Paper-enrichment cultures showed competition dynamics in response to the specific composition (lignin: hemi-cellulose: cellulose) of the different paper stocks. From leachate biomass, four novel cellulolytic bacteria were isolated, including two with the capacity for cellulolysis at industrially relevant temperatures. None of the isolates demonstrated exocellulase activity, consistent with the metagenome-based predictions. However, there was very little overlap between metagenome-derived predicted cellulolytic organisms, organisms enriched on paper sources, or the isolates, suggesting the landfill cellulolytic community is at low abundance but able to rapidly respond to introduced substrates.

Funder

NSERC

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3