Molecular Characterization of the Locus Encoding Biosynthesis of the Lipopolysaccharide O Antigen of Escherichia coli Serotype O113

Author:

Paton Adrienne W.1,Paton James C.1

Affiliation:

1. Molecular Microbiology Unit, Women's and Children's Hospital, North Adelaide, S.A. 5006, Australia

Abstract

ABSTRACT Shiga toxigenic Escherichia coli (STEC) strains are a diverse group of organisms capable of causing severe gastrointestinal disease in humans. Within the STEC family, eae -positive STEC strains, particularly those belonging to serogroups O157 and O111, appear to have greater virulence for humans. However, in spite of being eae negative, STEC strains belonging to serogroup O113 have frequently been associated with cases of severe STEC disease, including hemolytic-uremic syndrome (HUS). Western blot analysis with convalescent-phase serum from a patient with HUS caused by an O113:H21 STEC strain indicated that human immune responses were directed principally against lipopolysaccharide O antigen. Accordingly, the serum was used to isolate a clone expressing O113 O antigen from a cosmid library of O113:H21 DNA constructed in E. coli K-12. Sequence analysis indicated that the O113 O-antigen biosynthesis ( rfb ) locus contains a cluster of nine genes which may be cotranscribed. Comparison with sequence databases identified candidate genes for four glycosyl transferases, an O -acetyl transferase, an O-unit flippase, and an O-antigen polymerase, as well as copies of galE and gnd . Two additional, separately transcribed genes downstream of the O113 rfb region were predicted to encode enzymes involved in synthesis of activated sugar precursors, one of which (designated wbnF ) was essential for O113 O-antigen synthesis, and so is clearly a part of the O113 rfb locus. Interestingly, expression of O113 O antigen by E. coli K-12 significantly increased in vitro adherence to both HEp-2 and Henle 407 cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3