HP0333, a Member of the dprA Family, Is Involved in Natural Transformation in Helicobacter pylori

Author:

Ando Takafumi12,Israel Dawn A.1,Kusugami Kazuo2,Blaser Martin J.1

Affiliation:

1. Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine and VA Medical Center, Nashville, Tennessee,1 and

2. First Department of Internal Medicine, Nagoya University School of Medicine, Nagoya, Japan2

Abstract

ABSTRACT Helicobacter pylori is naturally competent for DNA transformation, but the mechanism by which transformation occurs is not known. For Haemophilus influenzae , dprA is required for transformation by chromosomal but not plasmid DNA, and the complete genomic sequence of H. pylori 26695 revealed a dprA homolog (HP0333). Examination of genetic databases indicates that DprA homologs are present in a wide variety of bacterial species. To examine whether HP0333 has a function similar to dprA of H. influenzae , HP0333, present in each of 11 strains studied, was disrupted in two H. pylori isolates. For both mutants, the frequency of transformation by H. pylori chromosomal DNA was markedly reduced, but not eliminated, compared to their wild-type parental strains. Mutation of HP0333 also resulted in a marked decrease in transformation frequency by a shuttle plasmid (pHP1), which differs from the phenotype described in H. influenzae . Complementation of the mutant with HP0333 inserted in trans in the chromosomal ureAB locus completely restored the frequency of transformation to that of the wild-type strain. Thus, while dprA is required for high-frequency transformation, transformation also may occur independently of DprA. The presence of DprA homologs in bacteria known not to be naturally competent suggests a broad function in DNA processing.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3