Efficient Gene Transfer in Bacterial Cell Chains

Author:

Babic Ana1,Berkmen Melanie B.1,Lee Catherine A.1,Grossman Alan D.1

Affiliation:

1. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Abstract

ABSTRACT Horizontal gene transfer contributes to evolution and the acquisition of new traits. In bacteria, horizontal gene transfer is often mediated by conjugative genetic elements that transfer directly from cell to cell. Integrative and conjugative elements (ICEs; also known as conjugative transposons) are mobile genetic elements that reside within a host genome but can excise to form a circle and transfer by conjugation to recipient cells. ICEs contribute to the spread of genes involved in pathogenesis, symbiosis, metabolism, and antibiotic resistance. Despite its importance, little is known about the mechanisms of conjugation in Gram-positive bacteria or how quickly or frequently transconjugants become donors. We visualized the transfer of the integrative and conjugative element ICE Bs1 from a Bacillus subtilis donor to recipient cells in real time using fluorescence microscopy. We found that transfer of DNA from a donor to a recipient appeared to occur at a cell pole or along the lateral cell surface of either cell. Most importantly, we found that when acquired by 1 cell in a chain, ICE Bs1 spread rapidly from cell to cell within the chain by additional sequential conjugation events. This intrachain conjugation is inherently more efficient than conjugation that is due to chance encounters between individual cells. Many bacterial species, including pathogenic, commensal, symbiotic, and nitrogen-fixing organisms, harbor ICEs and grow in chains, often as parts of microbial communities. It is likely that efficient intrachain spreading is a general feature of conjugative DNA transfer and serves to amplify the number of cells that acquire conjugative mobile genetic elements. IMPORTANCE Conjugative elements contribute to horizontal gene transfer and the acquisition of new traits. They are largely responsible for spreading antibiotic resistance in bacterial communities. To study the cell biology of conjugation, we visualized conjugative DNA transfer between Bacillus subtilis cells in real time using fluorescence microscopy. In contrast to previous predictions that transfer would occur preferentially from the donor cell pole, we found that transfer of DNA from a donor to a recipient appeared to occur at a cell pole or along the lateral cell surface of either cell. Most importantly, we found that when acquired by 1 cell in a chain, the conjugative DNA spread rapidly from cell to cell within the chain through sequential conjugation events. Since many bacterial species grow naturally in chains, this intrachain transfer is likely a common mechanism for accelerating the spread of conjugative elements within microbial communities.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3