Enhanced Production of Phospholipase C and Perfringolysin O (Alpha and Theta Toxins) in a Gatifloxacin-Resistant Strain of Clostridium perfringens

Author:

Rafii Fatemeh1,Park Miseon1,Bryant Amy E.23,Johnson Shemedia J.1,Wagner Robert D.1

Affiliation:

1. National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas

2. Veterans Affairs Medical Center, Boise, Idaho

3. University of Washington School of Medicine, Seattle, Washington

Abstract

ABSTRACT Clostridium perfringens -induced gas gangrene is mediated by potent extracellular toxins, especially alpha toxin (a phospholipase C [PLC]) and theta toxin (perfringolysin O [PFO], a thiol-activated cytolysin); and antibiotic-induced suppression of toxin synthesis is an important clinical goal. The production of PLC and PFO by a gatifloxacin-induced, fluoroquinolone-resistant mutant strain of C. perfringens , strain 10G, carrying a stable mutation in DNA gyrase was compared with that of the wild-type (WT) parent strain. Zymography (with sheep red blood cell and egg yolk overlays) and time course analysis [with hydrolysis of egg yolk lecithin and O -(4 nitrophenyl-phosphoryl)choline] demonstrated that strain 10G produced more PLC and PFO than the WT strain. Increased toxin production in strain 10G was not related either to differences in growth characteristics between the wild-type and the mutant strain or to nonsynonymous polymorphisms in PLC, PFO, or their known regulatory proteins. Increased PLC and PFO production by strain 10G was associated with increased cytotoxic activity for HT-29 human adenocarcinoma cells and with increased platelet-neutrophil aggregate formation. Four other gatifloxacin-induced gyrase mutants did not show increased toxin production, suggesting that gatifloxacin resistance was not always associated with increased toxin production in all strains of C. perfringens . This is the first report of increased toxin production in a fluoroquinolone-resistant strain of C. perfringens .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3