Isolation and characterization of hypertoxinogenic (htx) mutants of Escherichia coli KL320(pCG86)

Author:

Bramucci M G,Twiddy E M,Baine W B,Holmes R K

Abstract

The structural genes for heat-labile enterotoxin (LT) are present on plasmid pCG86. Escherichia coli KL320(pCG86), LT was found to be cell associated. LT was present as a soluble protein in sonic lysates of KL320(pCG86). Thirty-one mutants of KL320(pCG86) that produced increased amounts of extracellular LT were isolated. These hypertoxinogenic (htx) mutants were assigned to four phenotypically distinct classes based on the amounts of cell-associated and extracellular LT in early-stationary-phase cultures. Type 1 and type 2 htx mutants produced significantly increased amounts of cell-associated LT. Type 3 and type 4 htx mutants produced normal or decreased amounts of cell-associated LT was similar to that of the wild type. In the mutants of types 1, 3, and 4, the ratios of extracellular to cell-associated LT were higher than that of the wild type and were characteristic for each strain. Cell lysis or leakage of macromolecular cytoplasmic constituents appeared to be significant for release of LT by mutants of types 1, 3, and 4, because supernatants from cultures of these mutants also contained increased amounts of protein and of the cytoplasmic enzyme glucose 6-phosphate dehydrogenase. In all four representative htx mutants, the hypertoxinogenic phenotypes were dependent on chromosomal mutations. The resident pCG86 plasmids were eliminated from the htx mutants of types 2 and 3. After wild-type plasmid pCG86 was introduced into the cured strains by conjugation, their hypertoxinogenic phenotypes were restored. We conclude that chromosomal loci in E. coli KL320 are important in regulating expression of the LT structural genes of plasmid pCG86.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3