Purification and Chemical Characterization of the Heat-Stable Enterotoxin Produced by Porcine Strains of Enterotoxigenic Escherichia coli

Author:

Alderete John F.1,Robertson Donald C.1

Affiliation:

1. Department of Microbiology, University of Kansas, Lawrence, Kansas 66045

Abstract

Heat-stable enterotoxin (ST) produced by porcine strains of enterotoxigenic (ENT+) Escherichia coli has been purified to apparent homogeneity by sequential ultrafiltration, acetone fractionation, preparative gel electrophoresis, diethylaminoethyl Bio-Gel A ion-exchange chromatography, and Bio-Gel P-10 gel filtration. The enterotoxin, purified more than 1,500-fold, exhibited a molecular weight of 4,400, as determined by both sodium dodecyl sulfate-gel electrophoresis and gel filtration. A molecular weight of 5,100, representing 47 residues, was calculated from amino acid analysis data. The amino acid content was distinctive, with an unusually high proportion of cystines and few hydrophobic amino acids. A single amino-terminal residue, glycine, was observed. Purified ST was stable to heating (100°C, 30 min) and did not lose biological activity after treatment with Pronase, trypsin, proteinase K, deoxyribonuclease, ribonuclease, and phospholipase C. Periodic acid oxidation and several organic solvents (acetone, phenol, chloroform, and methanol) had no effect on the biological activity of ST. Further, purified ST was stable to acid treatment at pH 1.0 but lost biological activity at pH values greater than 9.0. Neither lipopolysaccharide nor lipid contamination was evident in purified preparations. A characteristic absorption spectrum was observed during the course of the purification, which shifted from a maximum at 260 nm in crude preparations to 270 nm for the purified toxin. Antiserum obtained from rabbits immunized with ST or ST coupled to bovine serum albumin neutralized the action of the enterotoxin in suckling mice; however, passive hemagglutination and hemolysis titer assays suggested that ST is a poor antigen.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3