Mitotic Phosphorylation Prevents the Binding of HMGN Proteins to Chromatin

Author:

Prymakowska-Bosak Marta1,Misteli Tom2,Herrera Julio E.1,Shirakawa Hitoshi1,Birger Yehudit1,Garfield Susan3,Bustin Michael1

Affiliation:

1. Protein Section, Laboratory of Metabolism,1

2. Cell Biology and Gene Expression Group, Laboratory of Receptor Biology and Gene Expression, 2 and

3. Laboratory of Experimental Carcinognesis, 3 DBS, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892

Abstract

ABSTRACT Condensation of the chromatin fiber and transcriptional inhibition during mitosis is associated with the redistribution of many DNA- and chromatin-binding proteins, including members of the high-mobility-group N (HMGN) family. Here we study the mechanism governing the organization of HMGN proteins in mitosis. Using site-specific antibodies and quantitative gel analysis with proteins extracted from synchronized HeLa cells, we demonstrate that, during mitosis, the conserved serine residues in the nucleosomal binding domain (NBD) of this protein family are highly and specifically phosphorylated. Nucleosome mobility shift assays with both in vitro-phosphorylated proteins and with point mutants bearing negative charges in the NBD demonstrate that the negative charge abolishes the ability of the proteins to bind to nucleosomes. Fluorescence loss of photobleaching demonstrates that, in living cells, the negative charge in the NBD increases the intranuclear mobility of the protein and significantly decreases the relative time that it is bound to chromatin. Expression of wild-type and mutant proteins in HmgN1 −/− cells indicates that the negatively charged protein is not bound to chromosomes. We conclude that during mitosis the NBD of HMGN proteins is highly phosphorylated and that this modification regulates the interaction of the proteins with chromatin.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3