Transformation of Azotobacter vinelandii with plasmid DNA

Author:

Glick B R,Brooks H E,Pasternak J J

Abstract

Azotobacter vinelandii cells can be transformed at high frequencies with the broad-host-range plasmids pRK2501, RSF1010, and pGSS15, using a modification of the procedure developed by Page and von Tigerstrom (J. Bacteriol. 139:1058-1061, 1979) for chromosomal DNA-mediated transformation. The frequency of transformation per microgram of plasmid DNA per viable cell with pRK2501 and pGSS15 was about 5 X 10(-2) and 2 X 10(-2), respectively. With RSF1010, transformation frequencies ranged from 3 X 10(-4) to 4 X 10(-2). With each plasmid, the frequency of transformation was independent of the phase of the growth cycle. When concentrations of pRK2501 ranging from 0.1 to 51 micrograms of DNA were tested, the frequency of transformation was directly proportional to the amount of DNA. This linear response indicated that, although the uptake of plasmid DNA with this procedure may be inefficient, there is a high probability that once inside a cell the plasmid will be stably maintained. Cells that have been transformed with pRK2501 did not grow well on transforming medium which lacks iron and contains fixed nitrogen. However, on growth medium which contains iron and lacks fixed nitrogen, transformants produced distinctive colonies larger than those of nontransformed cells. Resistance to kanamycin due to transformation by pRK2501 was stably maintained for at least 10 successive generations in the absence of selective pressure. The present protocol should facilitate the molecular cloning of genes in Azotobacter spp.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the path to [Fe-S] protein maturation: A personal perspective;Biochimica et Biophysica Acta (BBA) - Molecular Cell Research;2024-08

2. Role of Serine Coordination in the Structural and Functional Protection of the Nitrogenase P-Cluster;Journal of the American Chemical Society;2022-11-29

3. Redox-Dependent Metastability of the Nitrogenase P-Cluster;Journal of the American Chemical Society;2019-05-31

4. Azotobacter vinelandii: the source of 100 years of discoveries and many more to come;Microbiology;2018-04-01

5. Evidence for Functionally Relevant Encounter Complexes in Nitrogenase Catalysis;Journal of the American Chemical Society;2015-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3