The Phosphodiesterase DipA (PA5017) Is Essential for Pseudomonas aeruginosa Biofilm Dispersion

Author:

Roy Ankita Basu1,Petrova Olga E.1,Sauer Karin1

Affiliation:

1. Department of Biological Sciences, Binghamton University, Binghamton, New York, USA

Abstract

ABSTRACT Although little is known regarding the mechanism of biofilm dispersion, it is becoming clear that this process coincides with alteration of cyclic di-GMP (c-di-GMP) levels. Here, we demonstrate that dispersion by Pseudomonas aeruginosa in response to sudden changes in nutrient concentrations resulted in increased phosphodiesterase activity and reduction of c-di-GMP levels compared to biofilm and planktonic cells. By screening mutants inactivated in genes encoding EAL domains for nutrient-induced dispersion, we identified in addition to the previously reported Δ rbdA mutant a second mutant, the Δ dipA strain (PA5017 [ d ispersion- i nduced p hosphodiesterase A]), to be dispersion deficient in response to glutamate, nitric oxide, ammonium chloride, and mercury chloride. Using biochemical and in vivo studies, we show that DipA associates with the membrane and exhibits phosphodiesterase activity but no detectable diguanylate cyclase activity. Consistent with these data, a Δ dipA mutant exhibited reduced swarming motility, increased initial attachment, and polysaccharide production but only somewhat increased biofilm formation and c-di-GMP levels. DipA harbors an N-terminal GAF (c G MP-specific phosphodiesterases, a denylyl cyclases, and F hlA) domain and two EAL motifs within or near the C-terminal EAL domain. Mutational analyses of the two EAL motifs of DipA suggest that both are important for the observed phosphodiesterase activity and dispersion, while the GAF domain modulated DipA function both in vivo and in vitro without being required for phosphodiesterase activity. Dispersion was found to require protein synthesis and resulted in increased dipA expression and reduction of c-di-GMP levels. We propose a role of DipA in enabling dispersion in P. aeruginosa biofilms.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3