High Levels of Endemicity of 3-Chlorobenzoate-Degrading Soil Bacteria

Author:

Fulthorpe R. R.1,Rhodes A. N.2,Tiedje J. M.3

Affiliation:

1. University of Toronto at Scarborough, Toronto, Ontario, Canada M1C 1A41;

2. Department of Biology, U.S. Air Force Academy, Colorado Springs, Colorado 808402; and

3. Center for Microbial Ecology and Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan 48824-13253

Abstract

ABSTRACT Soils samples were obtained from pristine ecosystems in six regions on five continents. Two of the regions were boreal forests, and the other four were Mediterranean ecosystems. Twenty-four soil samples from each of four or five sites in each of the regions were enriched by using 3-chlorobenzoate (3CBA), and 3CBA mineralizers were isolated from most samples. These isolates were analyzed for the ability to mineralize 3CBA, and genotypes were determined with repetitive extragenic palindromic PCR genomic fingerprints and restriction digests of the 16S rRNA genes (amplified ribosomal DNA restriction analysis [ARDRA]). We found that our collection of 150 stable 3CBA-mineralizing isolates included 48 genotypes and 44 ARDRA types, which formed seven distinct clusters. The majority (91%) of the genotypes were unique to the sites from which they were isolated, and each genotype was found only in the region from which it was isolated. A total of 43 of the 44 ARDRA types were found in only one region. A few genotypes were repeatedly found in one region but not in any other continental region, suggesting that they are regionally endemic. A correlation between bacterial genotype and vegetative community was found for the South African samples. These results suggest that the ability to mineralize 3CBA is distributed among very diverse genotypes and that the genotypes are not globally dispersed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3