Genetic Analysis of the Upper Phenylacetate Catabolic Pathway in the Production of Tropodithietic Acid by Phaeobacter gallaeciensis

Author:

Berger Martine,Brock Nelson L.,Liesegang Heiko,Dogs Marco,Preuth Ines,Simon Meinhard,Dickschat Jeroen S.,Brinkhoff Thorsten

Abstract

ABSTRACTProduction of the antibiotic tropodithietic acid (TDA) depends on the central phenylacetate catabolic pathway, specifically on the oxygenase PaaABCDE, which catalyzes epoxidation of phenylacetyl-coenzyme A (CoA). Our study was focused on genes of the upper part of this pathway leading to phenylacetyl-CoA as precursor for TDA.Phaeobacter gallaeciensisDSM 17395 encodes two genes with homology to phenylacetyl-CoA ligases (paaK1andpaaK2), which were shown to be essential for phenylacetate catabolism but not for TDA biosynthesis and phenylalanine degradation. Thus, inP. gallaeciensisanother enzyme must produce phenylacetyl-CoA from phenylalanine. Using random transposon insertion mutagenesis of apaaK1-paaK2double mutant we identified a gene (ior1) with similarity toiorAandiorBin archaea, encoding an indolepyruvate:ferredoxin oxidoreductase (IOR). Theior1mutant was unable to grow on phenylalanine, and production of TDA was significantly reduced compared to the wild-type level (60%). Nuclear magnetic resonance (NMR) spectroscopic investigations using13C-labeled phenylalanine isotopomers demonstrated that phenylalanine is transformed into phenylacetyl-CoA by Ior1. Using quantitative real-time PCR, we could show that expression ofior1depends on the adjacent regulator IorR. Growth on phenylalanine promotes production of TDA, induces expression ofior1(27-fold) andpaaK1(61-fold), and regulates the production of TDA. Phylogenetic analysis showed that the aerobic type of IOR as found in many roseobacters is common within a number of different phylogenetic groups of aerobic bacteria such asBurkholderia,Cupriavidis, andRhizobia, where it may also contribute to the degradation of phenylalanine.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3