Isolation, purification, and partial characterization of an enterotoxin from extracts of Entamoeba histolytica trophozoites

Author:

Feingold C,Bracha R,Wexler A,Mirelman D

Abstract

Soluble cell-free extracts of pathogenic Entamoeba histolytica, as well as serum-free minimal media in which trophozoites are incubated, contain substances that cause the rapid rounding up and detachment of tissue-cultured monolayers of mammalian cells (cytopathic activity) and induce fluid secretion in ligated intestinal loops of indomethacin-pretreated rats (enterotoxic activity). A semiquantitative assay for the determination of the cytopathic activity based on the rate of detachment of tissue-cultured baby hamster kidney cells was developed. Two peaks containing cytopathic activity were obtained upon gel filtration of the soluble extracts: peak I, with over 60% of the activity, emerged in the 30,000 to 50,000 molecular weight region, and peak II, containing the remaining activity, was in the 15,000 to 25,000 molecular weight region. The activity of peak I was found to be heat labile and inhibited by sialoglycoproteins such as fetuin and mucin (5 mg/ml), as well as by sialic acid. Protease inhibitors such as antitrypsin, pepstatin, phenylmethylsulfonyl fluoride, metaloprotease inhibitors, and bacitracin had no effect on the cytopathic activity. Marked inhibition of cytopathic activity was observed, however, with iodoacetamide and p-chloromercuribenzoate, which affect sulfhydryl groups. The toxic material in peak II was found to have ionophoric activity and was not inhibited by sialic acid-containing compounds. The materials from both peaks had enterotoxic activity in intestinal ligated loops. The active substance from peak I was further purified (200X) on an agarose-fetuin affinity column, yielding one major protein band with an apparent molecular weight of ca. 30,000 on sodium dodecyl sulfate. Amino acid analysis revealed that the protein was very poor in sulfur amino acids. The sialic acid-sensitive toxic activity was higher in known virulent strains such as HM-1:IMSS and could be markedly augmented after preincubation of the trophozoites with certain Escherichia coli strains.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3