Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida

Author:

Coco W M1,Rothmel R K1,Henikoff S1,Chakrabarty A M1

Affiliation:

1. Department of Microbiology and Immunology, University of Illinois, Chicago 60612.

Abstract

The 3-chlorocatechol operon clcABD is central to the biodegradative pathway of 3-chlorobenzoate. The clcR regulatory gene, which activates the clcABD operon, was cloned from the region immediately upstream of the operon and was shown to complement an insertion mutation for growth on 3-chlorobenzoate. ClcR activated the clcA promoter, which controls expression of the clcABD operon, in trans by 14-fold in an in vivo promoter probe assay in Pseudomonas putida when cells were incubated with 15 mM 3-chlorobenzoic acid. Specific binding of ClcR to the clcR-clcA intergenic promoter region was observed in a gel shift assay. Nucleotide sequence analysis of the clcR gene predicts a polypeptide of 32.5 kDa, which was confirmed by using specific in vivo 35S labeling of the protein from a T7 promoter-controlled ATG fusion construct. ClcR shares high sequence identity with the LysR family of bacterial regulator proteins and has especially high homology to a subgroup of the family consisting of TcbR (57% amino acid sequence identity), TfdS, CatR, and CatM. ClcR was shown to autoregulate its own production in trans to 35% of unrepressed levels but partially relieved this autorepression under conditions that induced transcription at the clcA promoter. Several considerations indicate that the clcR-clcABD locus is most similar to the tcbR-tcbCDEF regulon.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference55 articles.

1. Cloning and complete nucleotide sequence determination of the catB gene encoding cis,cis-muconate lactonizing enzyme;Aldrich T. L.;Gene,1987

2. Divergent promoters, a common form of gene organization;Beck C. F.;Microbiol. Rev.,1988

3. A method of tagging specificpurpose linkers with an antibiotic-resistance gene for linker mutagenesis using a selectable marker;Bingle W. H.;BioTechniques,1991

4. Positive regulation of glutamate biosynthesis in Bacillus subtilis;Bohannon D. E.;J. Bacteriol.,1989

5. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding;Bradford M. M.;Anal. Biochem.,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3