Effect of Acidity on the Composition of an Indigenous Soil Population of Rhizobium trifolii Found in Nodules of Trifolium subterraneum L

Author:

Dughri Muktar H.1,Bottomley Peter J.1

Affiliation:

1. Departments of Microbiology and Soil Science, Oregon State University, Corvallis, Oregon 97331-3804

Abstract

Acidity affected which members of an indigenous soil population of Rhizobium trifolii nodulated Trifolium subterraneum L. cv. Mt. Barker. In three experiments involving plants grown either in mineral salts agar adjusted to pH 4.8 or 6.8 and inoculated with a soil suspension or grown directly in samples of unamended soil (pH 4.8) or soil amended with CaCO 3 (pH 6.4), 121 of 151 isolates of R. trifolii were placed into four serogroups. Seventy-nine of these isolates were placed into two serogroups (6 and 36) whose nodulating ability was affected by the pH of the plant root environment. Representatives of serogroup 6 occupied the greatest percentage of the nodules at the low pH in both mineral salts agar (77%) and in unlimed soil (47 and 57%). The same serogroup was a minor nodule occupant at the higher pH in mineral salts agar (0%) and in limed soil (0 and 10%). In contrast, serogroup 36 was virtually absent in nodules formed at the low pH, whereas it was the dominant serogroup at the higher pH in both mineral salts agar (32%) and in limed soil (35 and 49%). Despite the isolates from within each serogroup being antigenically identical, separation of cellular proteins by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis revealed four and six different gel types within serogroups 6 and 36, respectively. Isolates represented by one or two gel types dominated the contribution of each serogroup to the nodule population. Further evidence for differences between isolates within each gel type were revealed from measurements of symbiotic effectiveness.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3