Liming and choice of pasture species improve rhizobial persistence in an acidic chromosol (red-brown earth)

Author:

Roesner E. A.,Fettell N. A.,Brockwell J.

Abstract

An experiment was conducted to determine the persistence of soil root-nodule bacteria as influenced by different rates of lime and the previous pasture species. The work was done at Condobolin, central-western New South Wales, on a chromosol (red-brown earth), acidic in the upper profile (pHCa 4.6), which was representative of soils for an extensive region of the eastern Australian wheat belt. In autumn 1997, the experimental area was treated with 4 rates (6.0 t/ha, 3.0 t/ha, 1.5 t/ha, nil) of finely-ground agricultural limestone and sown with 5 pasture species: lucerne (Medicago sativa), barrel medic (M. truncatula), subterranean clover (Trifolium subterraneum), rose clover (T. hirtum) and ryegrass (Lolium rigidum). The pastures were removed with herbicide and cultivation in September 2000. The land lay fallow for 9 months and then was sown to wheat (Triticum aestivum) in autumn 2001 and again in autumn 2002. The most probable numbers of soil (0–10 cm) populations of the root–nodule bacterium for Medicago species (Sinorhizobium meliloti) and for the Trifolium species (Rhizobium leguminosarum bv. trifolii) were counted in May 2001 and May 2002. Soil pH, which was significantly (P<0.05) elevated 12 months after liming, declined substantially during the next 4 years although there was no concomitant decline in the pH of unlimed soil. The pasture species were highly productive of both pasture dry matter and nitrogen. The majority of legume pasture nitrogen was a consequence of symbiotic nitrogen fixation. There was a small but significant (P<0.05) dry matter response to application of lime in lucerne and barrel medic, and a larger nitrogen response to liming in lucerne, barrel medic and rose clover. Nitrogen fixation by rose clover appeared suboptimal. It was assumed from the density of plants that large populations of rhizobia developed in the soil during the growth of the legumes. Nine months after removal of the pasture, rhizobia numbers had fallen to low levels but did not fall further during the following year. The initial fall was attributed to high soil temperatures and low soil moisture during the Condobolin summer. The population of rhizobia for Trifolium species was about twice that of the rhizobia for Medicago species but the difference was not statistically significant. Liming had an overriding influence on the size of rhizobial populations, except in plots that had previously grown ryegrass where numbers remained low irrespective of rate of liming. Overall, most probable numbers escalated with each increase in rate of liming, from 10/g soil in the nil lime plots to 708/g in the 6 t/ha lime plots. The rhizobial homology of the pasture species (i.e. Sinorhizobium meliloti for the Medicago species and Rhizobium leguminosarum bv. trifolii for the Trifolium species) had an underlying but major influence on most probable numbers and in determining which rhizobial species occurred more commonly. Estimated populations of rhizobia in soils from homologous legumes were about 8 times those found in soils from non-homologous legumes. The benefits of applying lime to this red-brown earth soil may not have been merely a consequence of correction of low soil pH; increased levels of calcium may also have had a role. The results are discussed in relation to re-establishment of legume leys after the cereal phase of the cropping system.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3