Dysregulation of the Polo-Like Kinase Pathway in CD4 + T Cells Is Characteristic of Pathogenic Simian Immunodeficiency Virus Infection

Author:

Bostik Pavel1,Dodd Geraldine L.1,Villinger Francois1,Mayne Ann E.1,Ansari Aftab A.1

Affiliation:

1. Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322

Abstract

ABSTRACT CD4 + T-cell dysfunction highlighted by defects within the intracellular signaling cascade and cell cycle has long been characterized as a direct and/or indirect consequence of human immunodeficiency virus (HIV) infection in humans and simian immunodeficiency virus (SIV) infection in rhesus macaques (RM). Dysregulation of the M phase of the cell cycle is a well-documented effect of HIV or SIV infection both in vivo and in vitro. In this study the effect of SIV infection on the modulation of two important regulators of the M phase—polo-like kinases Plk3 and Plk1—was investigated. We have previously shown that Plk3 is markedly downregulated in CD4 + T cells from SIV-infected disease-susceptible RM but not SIV-infected disease-resistant sooty mangabeys (SM), denoting an association of downregulation with disease progression. Here we show that, in addition to the downregulation, Plk3 exhibits aberrant activation patterns in the CD4 + T cells from SIV-infected RM following T-cell receptor stimulation. Interestingly, in vitro SIV infection of CD4 + T cells leads to the upregulation, rather than downregulation, of Plk3, suggesting that different mechanisms operate in vitro and in vivo. In addition, CD4 + T cells from RM with high viral loads exhibited consistent and significant upregulation of Plk1, concurrent with an aberrant activation-induced Plk1 response, suggesting complex mechanisms of SIV-induced M-phase abnormalities in vivo. Altogether this study presents a novel mechanism underlying M-phase defects observed in CD4 + T cells from HIV or SIV-infected disease-susceptible humans and RM which may contribute to aberrant T-cell responses and disease pathogenesis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3