Identification of Protein Kinases Dysregulated in CD4 + T Cells in Pathogenic versus Apathogenic Simian Immunodeficiency Virus Infection

Author:

Bostik Pavel1,Wu Peggy1,Dodd Geraldine L.1,Villinger Francois1,Mayne Ann E.1,Bostik Vanda1,Grimm Bennett D.1,Robinson Dan2,Kung Hsing-Jien2,Ansari Aftab A.1

Affiliation:

1. Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322,1 and

2. University of California at Davis Cancer Center, Sacramento, California 958172

Abstract

ABSTRACT Human immunodeficiency virus infection in humans and simian immunodeficiency virus (SIV) infection in rhesus macaques (RM) leads to a generalized loss of immune responses involving perturbations in T-cell receptor (TCR) signaling. In contrast, naturally SIV-infected sooty mangabeys (SM) remain asymptomatic and retain immune responses despite relatively high viral loads. However, SIV infection in both RM and SM led to similar decreases in TCR-induced Lck phosphorylation. In this study, a protein tyrosine kinase (PTK) differential display method was utilized to characterize the effects of in vivo SIV infection on key signaling molecules of the CD4 + T-cell signaling pathways. The CD4 + T cells from SIV-infected RM, but not SIV-infected SM, showed chronic downregulation of baseline expression of MLK3, PRK, and GSK3, and symptomatically SIV-infected RM showed similar downregulation of MKK3. In vitro TCR stimulation with or without CD28 costimulation of CD4 + T cells did not lead to the enhancement of gene transcription of these PTKs. While the CD4 + T cells from SIV-infected RM showed a significant increase of the baseline and anti-TCR-mediated ROR2 transcription, SIV infection in SM led to substantially decreased anti-TCR-stimulated ROR2 transcription. TCR stimulation of CD4 + T cells from SIV-infected RM (but not SIV-infected SM) led to the repression of CaMKKβ and the induction of gene transcription of MLK2. Studies of the function of these molecules in T-cell signaling may lead to the identification of potential targets for specific intervention, leading to the restoration of T-cell responses.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3