Identification and Characterization of Genes Encoding a Putative ABC-Type Transporter Essential for Utilization of γ-Hexachlorocyclohexane in Sphingobium japonicum UT26

Author:

Endo Ryo1,Ohtsubo Yoshiyuki1,Tsuda Masataka1,Nagata Yuji1

Affiliation:

1. Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan

Abstract

ABSTRACT Sphingobium japonicum UT26 utilizes γ-hexachlorocyclohexane (γ-HCH) as its sole source of carbon and energy. In our previous studies, we cloned and characterized genes encoding enzymes for the conversion of γ-HCH to β-ketoadipate in UT26. In this study, we analyzed a mutant obtained by transposon mutagenesis and identified and characterized new genes encoding a putative ABC-type transporter essential for the utilization of γ-HCH in strain UT26. This putative ABC transporter consists of four components, permease, ATPase, periplasmic protein, and lipoprotein, encoded by linK , linL , linM , and linN , respectively. Mutation and complementation analyses indicated that all the linKLMN genes are required, probably as a set, for γ-HCH utilization in UT26. Furthermore, the mutant cells deficient in this putative ABC transporter showed (i) higher γ-HCH degradation activity and greater accumulation of the toxic dead-end product 2,5-dichlorophenol (2,5-DCP), (ii) higher sensitivity to 2,5-DCP itself, and (iii) higher permeability of hydrophobic compounds than the wild-type cells. These results strongly suggested that LinKLMN are involved in γ-HCH utilization by controlling membrane hydrophobicity. This study clearly demonstrated that a cellular factor besides catabolic enzymes and transcriptional regulators is essential for utilization of xenobiotic compounds in bacterial cells.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3