Plastic leachates impair picophytoplankton and dramatically reshape the marine microbiome

Author:

Focardi Amaranta,Moore Lisa R.,Raina Jean-Baptiste,Seymour Justin R.,Paulsen Ian T.,Tetu Sasha G.

Abstract

Abstract Background Each year, approximately 9.5 million metric tons of plastic waste enter the ocean with the potential to adversely impact all trophic levels. Until now, our understanding of the impact of plastic pollution on marine microorganisms has been largely restricted to the microbial assemblages that colonize plastic particles. However, plastic debris also leaches considerable amounts of chemical additives into the water, and this has the potential to impact key groups of planktonic marine microbes, not just those organisms attached to plastic surfaces. Results To investigate this, we explored the population and genetic level responses of a marine microbial community following exposure to leachate from a common plastic (polyvinyl chloride) or zinc, a specific plastic additive. Both the full mix of substances leached from polyvinyl chloride (PVC) and zinc alone had profound impacts on the taxonomic and functional diversity of our natural planktonic community. Microbial primary producers, both prokaryotic and eukaryotic, which comprise the base of the marine food web, were strongly impaired by exposure to plastic leachates, showing significant declines in photosynthetic efficiency, diversity, and abundance. Key heterotrophic taxa, such as SAR11, which are the most abundant planktonic organisms in the ocean, also exhibited significant declines in relative abundance when exposed to higher levels of PVC leachate. In contrast, many copiotrophic bacteria, including members of the Alteromonadales, dramatically increased in relative abundance under both exposure treatments. Moreover, functional gene and genome analyses, derived from metagenomes, revealed that PVC leachate exposure selects for fast-adapting, motile organisms, along with enrichment in genes usually associated with pathogenicity and an increased capacity to metabolize organic compounds leached from PVC. Conclusions This study shows that substances leached from plastics can restructure marine microbial communities with the potential for significant impacts on trophodynamics and biogeochemical cycling. These findings substantially expand our understanding of the ways by which plastic pollution impact life in our oceans, knowledge which is particularly important given that the burden of plastic pollution in the marine environment is predicted to continue to rise.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3