Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe

Author:

Degols G1,Shiozaki K1,Russell P1

Affiliation:

1. Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA.

Abstract

Spc1, an osmotic-stress-stimulated mitogen-activated protein kinase (MAPK) homolog in the fission yeast Schizosaccharomyces pombe, is required for the induction of mitosis and survival in high-osmolarity conditions. Spc1, also known as Sty1, is activated by Wis1 MAPK kinase and inhibited by Pyp1 tyrosine phosphatase. Spc1 is most closely related to Saccharomyces cerevisiae Hog1 and mammalian p38 kinases. Whereas Hog1 is specifically responsive to osmotic stress, we report here that Spc1 is activated by multiple forms of stress, including high temperature and oxidative stress. In this regard Spc1 is more similar to mammalian p38. Activation of Spc1 is crucial for survival of various forms of stress. Spc1 regulates expression of genes encoding stress-related proteins such as glycerol-3-phosphate dehydrogenase (gpd1+) and trehalose-6-phosphate synthase (tps1+). Spc1 also promotes expression of pyp2+, which encodes a tyrosine phosphatase postulated as a negative regulator of Spc1. This proposal is supported by the finding that Spc1 associates with Pyp2 in vivo and that the amount of Spc1 tyrosine phosphorylation is lower in a Pyp2-overproducing strain than in the wild type. Moreover, the level of stress-stimulated gpd1+ expression is higher in delta pyp2 mutants than in the wild type. These findings demonstrate that Spc1 promotes expression of genes involved in stress survival and that of regulation may be commonly employed to modulate MAPK signal transduction pathways in eukaryotic species.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference42 articles.

1. The osmoinducible gpd1~ gene is a target of the signaling pathway involving Wis1 MAP-kinase kinase in fission yeast;Aiba H.;FEBS Lett.,1995

2. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by high-osmolarity glycerol response pathway;Albertyn J.;Mol. Cell. Biol.,1994

3. Alfa C. P. Fantes J. Hyams M. McLeod and E. Warbrick. 1993. Experiments with fission yeast. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.

4. Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe;Blázquez M. A.;J. Bacteriol.,1994

5. An osmosensing signal transduction pathway in yeast;Brewster J. L.;Science,1993

Cited by 244 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3