Regulators of rDNA array morphology in fission yeast

Author:

Cockrell Alexandria J.ORCID,Lange Jeffrey J.ORCID,Wood ChristopherORCID,Mattingly Mark,McCroskey Scott M.,Bradford William D.,Conkright-Fincham Juliana,Weems Lauren,Guo Monica S.,Gerton Jennifer L.ORCID

Abstract

Nucleolar morphology is a well-established indicator of ribosome biogenesis activity that has served as the foundation of many screens investigating ribosome production. Missing from this field of study is a broad-scale investigation of the regulation of ribosomal DNA morphology, despite the essential role of rRNA gene transcription in modulating ribosome output. We hypothesized that the morphology of rDNA arrays reflects ribosome biogenesis activity. We established GapR-GFP, a prokaryotic DNA-binding protein that recognizes transcriptionally-induced overtwisted DNA, as a live visual fluorescent marker for quantitative analysis of rDNA organization in Schizosaccharomyces pombe. We found that the morphology—which we refer to as spatial organization—of the rDNA arrays is dynamic throughout the cell cycle, under glucose starvation, RNA pol I inhibition, and TOR activation. Screening the haploid S. pombe Bioneer deletion collection for spatial organization phenotypes revealed large ribosomal protein (RPL) gene deletions that alter rDNA organization. Further work revealed RPL gene deletion mutants with altered rDNA organization also demonstrate resistance to the TOR inhibitor Torin1. A genetic analysis of signaling pathways essential for this resistance phenotype implicated many factors including a conserved MAPK, Pmk1, previously linked to extracellular stress responses. We propose RPL gene deletion triggers altered rDNA morphology due to compensatory changes in ribosome biogenesis via multiple signaling pathways, and we further suggest compensatory responses may contribute to human diseases such as ribosomopathies. Altogether, GapR-GFP is a powerful tool for live visual reporting on rDNA morphology under myriad conditions.

Funder

Stowers Institute for Medical Research

NIH

Publisher

Public Library of Science (PLoS)

Reference66 articles.

1. Visualization of nucleolar genes;OL Miller;Science,1969

2. The economics of ribosome biosynthesis in yeast;JR Warner;Trends Biochem Sci,1999

3. Nucleolar function and size in cancer cells;M Derenzini;Am J Pathol,1998

4. Targeting the RNA Polymerase I Transcription for Cancer Therapy Comes of Age;R Ferreira;Cells,2020

5. TOR signaling in fission yeast;Y Otsubo;Crit Rev Biochem Mol Biol,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3