Epstein-Barr Virus Inhibits Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication in Primary Effusion Lymphomas

Author:

Xu Dongsheng1,Coleman Tricia1,Zhang Jun1,Fagot Ashley2,Kotalik Catherine3,Zhao Lingjun4,Trivedi Pankaj5,Jones Clinton16,Zhang Luwen13

Affiliation:

1. Nebraska Center for Virology

2. Department of Biochemistry

3. School of Biological Sciences

4. Institute for Molecular Virology, Saint Louis University, St. Louis, Missouri 63110

5. Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Experimental Medicine and Pathology, University of Rome, La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy

6. Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68588

Abstract

ABSTRACT The majority of AIDS-associated primary effusion lymphomas (PEL) are latently infected with both Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). PELs harboring two viruses have higher oncogenic potential, suggesting functional interactions between EBV and KSHV. The KSHV replication and transcription activator (K-RTA) is necessary and sufficient for induction of KSHV lytic replication. EBV latent membrane protein 1 (LMP-1) is essential for EBV transformation and establishment of latency in vitro. We show EBV inhibits chemically induced KSHV lytic replication, in part because of a regulatory loop in which K-RTA induces EBV LMP-1 and LMP-1 in turn inhibits K-RTA expression and furthermore the lytic gene expression of KSHV. Suppression of LMP-1 expression in dually infected PEL cells enhances the expression of K-RTA and lytic replication of KSHV upon chemical induction. Because LMP-1 is known to inhibit EBV lytic replication, KSHV-mediated induction of LMP-1 would potentiate EBV latency. Moreover, KSHV infection of EBV latency cells induces LMP-1, and K-RTA is involved in the induction. Both LMP-1 and K-RTA are expressed during primary infection by EBV of KSHV latency cells. Our findings provide evidence that an interaction between EBV and KSHV at molecular levels promotes the maintenance and possibly establishment of viral latency, which may contribute to pathogenesis of PELs.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3