Genotyping Multidrug-Resistant Mycobacterium tuberculosis from Primary Sputum and Decontaminated Sediment with an Integrated Microfluidic Amplification Microarray Test

Author:

Linger Yvonne1,Knickerbocker Christopher1,Sipes David1,Golova Julia1,Franke Molly2,Calderon Roger3,Lecca Leonid2,Thakore Nitu1,Holmberg Rebecca1,Qu Peter1,Kukhtin Alexander1,Murray Megan B.2,Cooney Christopher G.1,Chandler Darrell P.1

Affiliation:

1. Akonni Biosystems, Inc., Frederick, Maryland, USA

2. Harvard Medical School, Department of Global Health and Social Medicine, Boston, Massachusetts, USA

3. Socios En Salud Sucursal Perú, Lima, Peru

Abstract

ABSTRACT There is a growing awareness that molecular diagnostics for detect-to-treat applications will soon need a highly multiplexed mutation detection and identification capability. In this study, we converted an open-amplicon microarray hybridization test for multidrug-resistant (MDR) Mycobacterium tuberculosis into an entirely closed-amplicon consumable (an amplification microarray) and evaluated its performance with matched sputum and sediment extracts. Reproducible genotyping (the limit of detection) was achieved with ∼25 M. tuberculosis genomes (100 fg of M. tuberculosis DNA) per reaction; the estimated shelf life of the test was at least 18 months when it was stored at 4°C. The test detected M. tuberculosis in 99.1% of sputum extracts and 100% of sediment extracts and showed 100% concordance with the results of real-time PCR. The levels of concordance between M. tuberculosis and resistance-associated gene detection were 99.1% and 98.4% for sputum and sediment extracts, respectively. Genotyping results were 100% concordant between sputum and sediment extracts. Relative to the results of culture-based drug susceptibility testing, the test was 97.1% specific and 75.0% sensitive for the detection of rifampin resistance in both sputum and sediment extracts. The specificity for the detection of isoniazid (INH) resistance was 98.4% and 96.8% for sputum and sediment extracts, respectively, and the sensitivity for the detection of INH resistance was 63.6%. The amplification microarray reported the correct genotype for all discordant phenotype/genotype results. On the basis of these data, primary sputum may be considered a preferred specimen for the test. The amplification microarray design, shelf life, and analytical performance metrics are well aligned with consensus product profiles for next-generation drug-resistant M. tuberculosis diagnostics and represent a significant ease-of-use advantage over other hybridization-based tests for diagnosing MDR tuberculosis.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Reference49 articles.

1. Development, roll-out and impact of Xpert MTB/RIF for tuberculosis: what lessons have we learnt and how can we do better?

2. Tuberculosis diagnostics: which target product profiles should be prioritised?

3. World Health Organization. 2014. High-priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting. World Health Organization, Geneva, Switzerland.

4. World Health Organization. 2014. Xpert MTB/RIF implementation manual. Technical and operational ‘how-to’: practical considerations. World Health Organization, Geneva, Switzerland.

5. Prognostic significance of novel katG mutations in Mycobacterium tuberculosis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3