Affiliation:
1. Atlanta Research and Education Foundation
2. Centers for Disease Control and Prevention, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Division of Parasitic Diseases, Atlanta, Georgia 30341
Abstract
ABSTRACT
Inactivation of infectious viruses during drinking water treatment is usually achieved with free chlorine. Many drinking water utilities in the United States now use monochloramine as a secondary disinfectant to minimize disinfectant by-product formation and biofilm growth. The inactivation of human adenoviruses 2, 40, and 41 (HAdV2, HAdV40, and HAdV41), coxsackieviruses B3 and B5 (CVB3 and CVB5), echoviruses 1 and 11 (E1 and E11), and murine norovirus (MNV) are compared in this study. Experiments were performed with 0.2 mg of free chlorine or 1 mg of monochloramine/liter at pH 7 and 8 in buffered reagent-grade water at 5°C. CT values (disinfectant concentration × time) for 2- to 4-log
10
(99 to 99.99%) reductions in virus titers were calculated by using the efficiency factor Hom model. The enteroviruses required the longest times for chlorine inactivation and MNV the least time. CVB5 required the longest exposure time, with CT values of 7.4 and 10 mg·min/liter (pH 7 and 8) for 4-log
10
inactivation. Monochloramine disinfection was most effective for E1 (CT values ranged from 8 to 18 mg·min/liter for 2- and 3-log
10
reductions, respectively). E11 and HAdV2 were the least susceptible to monochloramine disinfection (CT values of 1,300 and 1,600 mg-min/liter for 3-log
10
reductions, respectively). Monochloramine inactivation was most successful for the adenoviruses, CVB5, and E1 at pH 7. A greater variation in inactivation rates between viruses was observed during monochloramine disinfection than during chlorine disinfection. These data will be useful in drinking water risk assessment studies and disinfection system planning.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Reference44 articles.
1. Standard methods for the examination of water and wastewater 2005
2. American Water Works Association. 2000. Committee report: disinfection at large and medium-size systems. J. Am Water Works Assoc.92:32-43.
3. Evaluation of Murine Norovirus, Feline Calicivirus, Poliovirus, and MS2 as Surrogates for Human Norovirus in a Model of Viral Persistence in Surface Water and Groundwater
4. Ballester, N. A., and J. P. Malley. 2004. Sequential disinfection of adenovirus type 2 with UV-chlorine-chloramine. J. Am. Water Works Assoc.96:97-103.
5. Baxter, C. S., R. Hofmann, M. R. Templeton, M. Brown, and R. C. Andrews. 2007. Inactivation of adenovirus types 2, 5, and 41 in drinking water by UV light, free chlorine, and monochloramine. J. Environ. Eng. ASCE133:95-103.
Cited by
134 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献