MgrA Is a Multiple Regulator of Two New Efflux Pumps in Staphylococcus aureus

Author:

Truong-Bolduc Q. C.12,Dunman P. M.3,Strahilevitz J.12,Projan S. J.3,Hooper D. C.12

Affiliation:

1. Division of Infectious Diseases and Medical Services, Massachusetts General Hospital

2. Harvard Medical School, Boston, Massachusetts

3. Department of Infectious Diseases, Wyeth Research, Pearl River, New York

Abstract

ABSTRACT In an analysis of the resistance mechanisms of an mgrA mutant, we identified two genes encoding previously undescribed transporters, NorB and Tet38. norB was 1,392 bp and encoded a predicted 49-kDa protein. When overexpressed, NorB led to an increase in resistance to hydrophilic quinolones, ethidium bromide, and cetrimide and also to sparfloxacin, moxifloxacin, and tetracycline, a resistance phenotype of the mgrA mutant. NorA and NorB shared 30% similarity, and NorB shared 30 and 41% similarities with the Bmr and Blt transporters of Bacillus subtilis , respectively. The second efflux pump was a more selective transporter that we have called Tet38, which had 46% similarity with the plasmid-encoded TetK efflux transporter of S. aureus. tet38 was 1,353 bp and encoded a predicted 49-kDa protein. Overexpression of tet38 produced resistance to tetracycline but not to minocycline and other drugs. norB and tet38 transcription was negatively regulated by MgrA. Limited binding of MgrA to the promoter regions of norB and tet38 was demonstrated by gel shift assays, suggesting that MgrA was an indirect regulator of norB and tet38 expression. The mgrA norB double mutant was reproducibly twofold more susceptible to the tested quinolones than the mgrA mutant. The mgrA tet38 double mutant became more susceptible to tetracycline than the wild-type parent strain. These data demonstrate that overexpression of NorB and Tet38 contribute, respectively, to the hydrophobic quinolone resistance and the tetracycline resistance of the mgrA mutant and that MgrA regulates expression of norB and tet38 in addition to its role in regulation of norA expression.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3