Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated

Author:

Ahmed M1,Lyass L1,Markham P N1,Taylor S S1,Vázquez-Laslop N1,Neyfakh A A1

Affiliation:

1. Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago 60612, USA.

Abstract

The Bacillus subtilis genome encodes two multidrug efflux transporters sharing 51% sequence identity: Bmr, described previously, and Blt, described here. Overexpression of either transporter in B. subtilis leads to a similar increase in resistance to ethidium bromide, rhodamine and acridine dyes, tetraphenylphosphonium, doxorubicin, and fluoroquinolone antibiotics. However, Blt differs widely from Bmr in its expression pattern. Under standard cultivation conditions, B. subtilis expresses Bmr but Blt expression is undetectable. We have previously shown that Bmr expression is regulated by BmrR, a member of the family of MerR-like transcriptional activators. Here we show that blt transcription is regulated by another member of the same family, BltR. The DNA-binding domains of BmrR and BltR are related, but their putative inducer-binding domains are dissimilar, suggesting that Bmr and Blt are expressed in response to different inducers. Indeed, rhodamine, a substrate of Bmr and Blt and a known inducer of Bmr expression, does not induce Blt expression. Blt expression has been observed only in B. subtilis, carrying mutation acfA, which, as we show here, alters the sequence of the blt gene promoter. Unlike bmr, which is transcribed as a monocistronic mRNA, blt is cotranscribed with a downstream gene encoding a putative acetyltransferase. Overall, the differences in transcriptional control and operon organization between bmr and blt suggest that the transporters encoded by these genes have independent functions involving the transport of distinct physiological compounds.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3