Role of SP1-binding domains in in vivo transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat

Author:

Harrich D1,Garcia J1,Wu F1,Mitsuyasu R1,Gonazalez J1,Gaynor R1

Affiliation:

1. Department of Medicine, School of Medicine, University of California, Los Angeles 90024.

Abstract

Five regions of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) have been shown to be important in the transcriptional regulation of HIV in HeLa cells. These include the negative regulatory, enhancer, SP1, TATA, and TAR regions. Previous studies in which purified SP1 was used showed that the three SP1-binding sites in the HIV LTR were important in the in vitro transcription of this promoter. However, no studies to ascertain the role of each of these SP1-binding sites in basal and tat-induced transcriptional activation in vivo have been reported. To determine the role of SP1 sites in transcriptional regulation of the HIV LTR in vivo, these sites were subjected to oligonucleotide mutagenesis both individually and in groups. The constructs were tested by DNase I footprinting with both oligonucleotide affinity column-purified SP1 and partially purified HeLa extract and by chloramphenicol acetyltransferase assays in both the presence and absence of the tat gene. Mutagenesis of each SP1-binding site resulted in minimal changes in basal and tat-induced transcriptional activation. Mutations involving alterations of SP1 sites I and II, I and III, or II and III also resulted in minimal decreases in basal and tat-induced transcriptional activation. However, mutagenesis of all three SP1-binding sites resulted in a marked decrease in tat induction. The latter mutation also greatly decreased DNase I protection over the enhancer, TATA, and TAR regions when partially purified HeLa nuclear extract was used. Mutagenesis of the HIV LTR SP1 sites which converted them to consensus high-affinity SP1-binding sites with the sequence GGGGCGGGGC resulted in increased tat-induced gene expression compared with the wild-type HIV LTR template. These results suggest that SP1, through its interaction with other DNA-binding proteins, is critical for in vivo transcriptional regulation of HIV.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3