Adenovirus Type 9 Fiber Knob Binds to the Coxsackie B Virus-Adenovirus Receptor (CAR) with Lower Affinity than Fiber Knobs of Other CAR-Binding Adenovirus Serotypes

Author:

Kirby Ian1,Lord Rosemary1,Davison Elizabeth1,Wickham Thomas J.2,Roelvink Peter W.2,Kovesdi Imre2,Sutton Brian J.3,Santis George1

Affiliation:

1. Department of Respiratory Medicine and Allergy, The Guy's, King's College and St. Thomas' Hospitals School of Medicine, Guy's Hospital, London SE1 9RT,1and

2. GenVec, Gaithersburg, Maryland 208782

3. The Randall Centre, King's College London, London SE1 1UL,3 United Kingdom, and

Abstract

ABSTRACT The coxsackie B virus and adenovirus (Ad) receptor (CAR) functions as an attachment receptor for multiple Ad serotypes. Here we show that the Ad serotype 9 (Ad9) fiber knob binds to CAR with much reduced affinity compared to the binding by Ad5 and Ad12 fiber knobs as well as the knob of the long fiber of Ad41 (Ad41L). Substitution of Asp222 in Ad9 fiber knob with a lysine that is conserved in Ad5, Ad12, and Ad41L substantially improved Ad9 fiber knob binding to CAR, while the corresponding substitution in Ad5 (Lys442Asp) significantly reduced Ad5 binding. The presence of an aspartic acid residue in Ad9 therefore accounts, at least in part, for the reduced CAR binding affinity of the Ad9 fiber knob. Site-directed mutagenesis of CAR revealed that CAR residues Leu73 and Lys121 and/or Lys123 are critical contact residues, with Tyr80 and Tyr83 being peripherally involved in the binding interaction with the Ad5, Ad9, Ad12, and Ad41L fiber knobs. The overall affinities and the association and dissociation rate constants for wild-type CAR as well as Tyr80 and Tyr83 CAR mutants differed between the serotypes, indicating that their binding modes, although similar, are not identical.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3