Affiliation:
1. Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
Abstract
ABSTRACT
The functional analysis of molecular determinants which control the replication of pestiviruses was considerably facilitated by the finding that subgenomic forms of the positive-strand RNA genome of BVDV (bovine viral diarrhea virus) are capable of autonomous replication in transfected host cells. The prototype replicon, BVDV DI9c, consists of the genomic 5′ and 3′ untranslated regions and a truncated open reading frame (ORF) encoding mainly the nonstructural proteins NS3, NS4A, NS4B, NS5A, and NS5B. To gain insight into which of these proteins are essential for viral replication and whether they act in
cis
or in
trans
, we introduced a large spectrum of in-frame mutations into the DI9c ORF. Tests of the mutant RNAs in terms of their replication capacity and their ability to support translation and cleavage of the nonstructural polyprotein, and whether defects could be rescued in
trans
, yielded the following results. (i) RNA replication was found to be dependent on the expression of each of the DI9c-encoded mature proteins NS3 to NS5B (and the known associated enzymatic activities). In the same context, a finely balanced molar ratio of the diverse proteolytic processing products was indicated to be crucial for the formation of an active catalytic replication complex. (ii) Synthesis of negative-strand intermediate and progeny positive-strand RNA was observed to be strictly coupled with all functional DI9c ORF derivatives. NS3 to NS5B were hence suggested to play a pivotal role even during early steps of the viral replication pathway. (iii) Mutations in the NS3 and NS4B units which generated nonfunctional or less functional RNAs were determined to be
cis
dominant. Likewise, lethal alterations in the NS4A and NS5B regions were invariably noncomplementable. (iv) In surprising contrast, replication of functional and nonfunctional NS5A mutants could be clearly enhanced and restored, respectively. In summary, our data provide initial insights into the organization of the pestivirus replication machinery.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献