Characterization of an Autonomous Subgenomic Pestivirus RNA Replicon

Author:

Behrens Sven-Erik1,Grassmann Claus W.1,Thiel Heinz-Jürgen1,Meyers Gregor2,Tautz Norbert1

Affiliation:

1. Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität Giessen, D-35392 Giessen,1 and

2. Federal Research Centre for Virus Diseases of Animals, D-72001 Tübingen,2 Germany

Abstract

ABSTRACT As an initial approach to define the requirements for the replication of bovine viral diarrhea virus (BVDV), a member of the Flaviviridae family with a positive-strand RNA genome, full-length genomic and subgenomic RNAs were originated by in vitro transcription of diverse BVDV cDNA constructs and transfected into eucaryotic host cells. RNA replication was measured either directly by an RNase protection method or by monitoring the synthesis of viral protein. When full-length BVDV cRNA was initially applied, the synthesis of negative-strand RNA intermediates as well as progeny positive-strand RNA was detected posttransfection in the cytoplasm of the host cells. Compared to the negative-strand RNA intermediate, an excess of positive-strand RNA was synthesized. Surprisingly, a subgenomic RNA molecule, DI9c, corresponding to a previously characterized defective interfering particle, was found to support both steps of RNA replication in the absence of a helper virus as well, thus functioning as an autonomous replicon. DI9c comprises the 5′ and 3′ untranslated regions of the BVDV genome and the coding regions of the autoprotease N pro and the nonstructural proteins NS3, NS4A, NS4B, NS5A, and NS5B. Most interestingly, the NS2 polypeptide was thus determined to be nonessential for RNA replication. As expected, deletion of the genomic 3′ end as well as abolition of the catalytic function of the virus-encoded serine protease resulted in DI9c molecules that were unable to replicate. Deletion of the entire N pro gene also destroyed the ability of DI9c molecules to replicate. On the other hand, DI9c derivatives in which the 5′ third of the N pro gene was fused to a ubiquitin gene, allowing the proteolytic release of NS3 in trans , turned out to be replication competent. These results suggest that the RNA sequence located at the 5′ end of the open reading frame exerts an essential role during BVDV replication. Replication of DI9c and DI9c derivatives was found not to be limited to host cells of bovine origin, indicating that cellular factors functioning as potential parts of the viral replication machinery are well conserved between different mammalian cells. Our data provide an important step toward the ready identification and characterization of viral factors and genomic elements involved in the life cycle of pestiviruses. The implications for other Flaviviridae and, in particular, the BVDV-related human hepatitis C virus are discussed.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3