Affiliation:
1. Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, Netherlands
Abstract
ABSTRACT
Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier carnitine and a (peroxisomal) citrate synthase-dependent pathway. In the carnitine-dependent pathway, carnitine acetyltransferases exchange the CoA group of acetyl-CoA for carnitine, thereby forming acetyl-carnitine, which can be transported between subcellular compartments. Citrate synthase catalyzes the condensation of oxaloacetate and acetyl-CoA to form citrate that can be transported over the membrane. Since essential metabolic pathways such as fatty acid β-oxidation, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle are physically separated into different organelles, shuttling of acetyl units is essential for growth of fungal species on various carbon sources such as fatty acids, ethanol, acetate, or citrate. In this review we summarize the current knowledge on the different systems of acetyl transport that are operational during alternative carbon metabolism, with special focus on two fungal species:
Saccharomyces cerevisiae
and
Candida albicans
.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献