Role of Acetyl Coenzyme A Synthesis and Breakdown in Alternative Carbon Source Utilization in Candida albicans

Author:

Carman Aaron J.1,Vylkova Slavena1,Lorenz Michael C.1

Affiliation:

1. Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas 77030

Abstract

ABSTRACT Acetyl coenzyme A (acetyl-CoA) is the central intermediate of the pathways required to metabolize nonfermentable carbon sources. Three such pathways, i.e., gluconeogenesis, the glyoxylate cycle, and β-oxidation, are required for full virulence in the fungal pathogen Candida albicans . These processes are compartmentalized in the cytosol, mitochondria, and peroxosomes, necessitating transport of intermediates across intracellular membranes. Acetyl-CoA is trafficked in the form of acetate by the carnitine shuttle, and we hypothesized that the enzymes that convert acetyl-CoA to/from acetate, i.e., acetyl-CoA hydrolase ( ACH1 ) and acetyl-CoA synthetase ( ACS1 and ACS2 ), would regulate alternative carbon utilization and virulence. We show that C. albicans strains depleted for ACS2 are unviable in the presence of most carbon sources, including glucose, acetate, and ethanol; these strains metabolize only fatty acids and glycerol, a substantially more severe phenotype than that of Saccharomyces cerevisiae acs2 mutants. In contrast, deletion of ACS1 confers no phenotype, though it is highly induced in the presence of fatty acids, perhaps explaining why acs2 mutants can utilize fatty acids. Strains lacking ACH1 have a mild growth defect on some carbon sources but are fully virulent in a mouse model of disseminated candidiasis. Both ACH1 and ACS2 complement mutations in their S. cerevisiae homolog. Together, these results show that acetyl-CoA metabolism and transport are critical for growth of C. albicans on a wide variety of nutrients. Furthermore, the phenotypic differences between mutations in these highly conserved genes in S. cerevisiae and C. albicans support recent findings that significant functional divergence exists even in fundamental metabolic pathways between these related yeasts.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3