Affiliation:
1. Department of Microbiology and Immunology, Showa University School of Medicine,1 and
2. Tokyo Food Techno Co., Ltd.,2 Tokyo, Japan
Abstract
ABSTRACT
Compared to MICs (more than 800 μg/ml) of (−)-epigallocatechin gallate (EGCg) against
Escherchia coli
, MICs of EGCg against methicillin-susceptible and methicillin-resistant
Staphylococcus aureus
(MSSA and MRSA) were 100 μg/ml or less. Furthermore, less than 25 μg EGCg per ml obviously reversed the high level resistance of MRSA to all types of tested β-lactams, including benzylpenicillin, oxacillin, methicillin, ampicillin, and cephalexin. EGCg also induced a supersusceptibility to β-lactams in MSSA which does not express
mecA
, encoding penicillin-binding protein 2′ (PBP2′). The fractional inhibitory concentration (FIC) indices of the tested β-lactams against 25 isolates of MRSA were from 0.126 to 0.625 in combination with 6.25, 12.5 or 25 μg of EGCg per ml. However, no synergism was observed between EGCg and ampicillin against
E. coli
. EGCg largely reduced the tolerance of MRSA and MSSA to high ionic strength and low osmotic pressure in their external atmosphere, indicating damage of the cell wall. Unlike dextran and lipopolysaccharide, peptidoglycan from
S. aureus
blocked both the antibacterial activity of EGCg and the synergism between EGCg and oxacillin, suggesting a direct binding of EGCg with peptidoglycan on the cell wall. EGCg showed a synergistic effect with
dl
-cycloserine (an inhibitor of cell wall synthesis unrelated to PBP2′) but additive or indifferent effect with inhibitors of protein and nuclear acid synthesis. EGCg did not suppress either PBP2′ mRNA expression or PBP2′ production, as confirmed by reverse transcription-PCR and a semiquantitative PBP2′ latex agglutination assay, indicating an irrelevance between the synergy and PBP2′ production. In summary, both EGCg and β-lactams directly or indirectly attack the same site, peptidoglycan on the cell wall. EGCg synergizes the activity of β-lactams against MRSA owing to interference with the integrity of the cell wall through direct binding to peptidoglycan.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
306 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献