Thioflavin-T does not report on electrochemical potential and memory of dormant or germinating bacterial spores

Author:

Li Yong-qing12ORCID,He Lin1,Aryal Makunda2,Wicander James3,Korza George3,Setlow Peter3ORCID

Affiliation:

1. School of Electrical Engineering and Intelligentization, Dongguan University of Technology , Dongguan, Guangdong, China

2. Department of Physics, East Carolina University , Greenville, North Carolina, USA

3. Department of Molecular Biology and Biophysics, UConn Health , Farmington, Connecticut, USA

Abstract

ABSTRACT Bacterial spores are metabolically dormant, resistant to microbicides, and vectors of food spoilage and diseases, while germinated spores are easy to kill. Consequently, understanding germination mechanisms may facilitate the development of “germinate-to-eradicate” strategies. Spores germinate in response to many compounds (called germinants). They can also retain the memory of a germinant exposure, such that a second exposure triggers more efficient germination, but how is not clear. A recent high-profile paper [Science (2022) 378:43] suggested that increasing spore electrochemical potential is how memory is “stored” based on measurements of Bacillus subtilis spores’ accumulation of the dye thioflavin-T after germinant exposure. Indeed, we found that wild-type spores of three Bacillus and one Clostridioides species all exhibited this early thioflavin-T accumulation during nutrient pulses. However, our data indicate that inferring spores’ electrochemical potential from thioflavin-T accumulation is problematic. We found that B. subtilis spores lacking their proteinaceous coat exhibited memory but did not accumulate thioflavin-T prior to germinant addition or during nutrient pulses. Furthermore, wild-type Bacillus spores germinating with dodecylamine, which also elicits memory, showed no thioflavin-T accumulation. Finally, we found that thioflavin-T accumulation by a germinating spore is outside the spore core at early stages but inside the spore core as germination proceeds. These findings suggest that thioflavin-T accumulation during the early stages of germination is due to its binding to one or more protein in the spore coat rather than to changes in spores’ electrochemical potential; thus, thioflavin-T is not a potentiometric dye for the study of spore memory of germinant pulses. IMPORTANCE Bacillus and Clostridium spores cause food spoilage and disease because of spores’ dormancy and resistance to microbicides. However, when spores “come back to life” in germination, their resistance properties are lost. Thus, understanding the mechanisms of spore germination could facilitate the development of “germinate to eradicate” strategies. One germination feature is the memory of a pulsed germinant stimulus leading to greater germination following a second pulse. Recent observations of increases in spore binding of the potentiometric dye thioflavin-T early in their germination of spores led to the suggestion that increasing electrochemical potential is how spores “remember” germinant pulses. However, new work finds no increased thioflavin-T binding in the physiological germination of Coatless spores or of intact spores germinating with dodecylamine, even though spore memory is seen in both cases. Thus, using thioflavin-T uptake by germinating spores to assess the involvement of electrochemical potential in memory of germinant exposure, as suggested recently, is questionable.

Funder

MOST | National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3