Integrons found in different locations have identical 5' ends but variable 3' ends

Author:

Hall R M1,Brown H J1,Brookes D E1,Stokes H W1

Affiliation:

1. CSIRO Division of Biomolecular Engineering, Sydney Laboratory, North Ryde, New South Wales, Australia.

Abstract

The positions of the outer boundaries of the 5'- and 3'-conserved segment sequences of integrons found at several different locations have been determined. The position of the 5' end of the 5'-conserved segment is the same for six independently located integrons, In1 (R46), In2 (Tn21), In3 (R388), In4 (Tn1696), In5 (pSCH884), and In0 (pVS1). However, the extent of the 3'-conserved segment differs in each integron. The sequences of In2 and In0 diverge first from the conserved sequence, and their divergence point corresponds to the 3'-conserved segment endpoint defined previously (H.W. Stokes and R.M. Hall, Mol. Microbiol. 3:1669-1683, 1989), which now represents the endpoint of a 359-base deletion in In0 and In2. The sequence identity in In3, In1, In4, and In5 extends beyond this point, but each sequence diverges from the conserved sequence at a different point within a short region. Insertions of IS6100 were identified adjacent to the end of the conserved region in In1 and 123 bases beyond the divergence point of In4. These 123 bases are identical to the sequence found at the mer end of the 11.2-kb insertion in Tn21 but are inverted. In5 and In0 are bounded by the same 25-base inverted repeat that bounds the 11.2-kb insert in Tn21, and this insert now corresponds to In2. However, while In0, In2, and In5 have features characteristic of transposable elements, differences in the structures of these three integrons and the absence of evidence of mobility currently preclude the identification of all of the sequences associated with a functional transposon of this type.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3