Affiliation:
1. Department of Biochemistry, College of Medicine, University of Tennessee, Memphis 38163.
Abstract
TnphoA was used to mutagenize the chromosome in an effort to identify membrane-bound and exported components of the long-chain fatty acid transport system of Escherichia coli. This strategy identified three classes of fusions that were unable to grow or grew at reduced rates on minimal agar plates containing the long-chain fatty acid oleate (C18:1), (i) fadL-phoA, (ii) tolC-phoA, and (iii) tsp-phoA, fadL-phoA and tolC-phoA fusions were unable to grow on oleate as the sole carbon and energy source, while the tsp-phoA fusion had a markedly reduced growth rate. As expected, fadL-phoA fusions were unable to grow on oleate plates because the outer membrane-bound fatty acid transport protein FadL was defective. The identification of multiple fadL-phoa fusions demonstrated that this strategy of mutagenesis specifically targeted membrane-bound and exported components required for growth on long-chain fatty acids. tolC-phoA fusions were sensitive to fatty acids (particularly medium chain) and thus unable to grow, whereas the reduced growth rate of tsp-phoA fusions on oleate was apparently due to changes in the energized state of the outer membrane or inner membrane. tsp-phoA fusions transported the long-chain fatty acid oleate at only 50% of wild-type levels when cells were energized with 1 mM DL-lactate. Under conditions in which transport was measured in the absence of lactate, tsp-phoA fusion strains and wild-type strains had the same levels of oleate transport. The tsp+ clone pAZA500 was able to restore wild-type transport activity to the tsp-phoA strain under lactate-energized conditions. These results indicate that the periplasmic protein Tsp potentiates long-chain fatty acid transport.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献