Use of transposon TnphoA to identify genes for cell envelope proteins of Escherichia coli required for long-chain fatty acid transport: the periplasmic protein Tsp potentiates long-chain fatty acid transport

Author:

Azizan A1,Black P N1

Affiliation:

1. Department of Biochemistry, College of Medicine, University of Tennessee, Memphis 38163.

Abstract

TnphoA was used to mutagenize the chromosome in an effort to identify membrane-bound and exported components of the long-chain fatty acid transport system of Escherichia coli. This strategy identified three classes of fusions that were unable to grow or grew at reduced rates on minimal agar plates containing the long-chain fatty acid oleate (C18:1), (i) fadL-phoA, (ii) tolC-phoA, and (iii) tsp-phoA, fadL-phoA and tolC-phoA fusions were unable to grow on oleate as the sole carbon and energy source, while the tsp-phoA fusion had a markedly reduced growth rate. As expected, fadL-phoA fusions were unable to grow on oleate plates because the outer membrane-bound fatty acid transport protein FadL was defective. The identification of multiple fadL-phoa fusions demonstrated that this strategy of mutagenesis specifically targeted membrane-bound and exported components required for growth on long-chain fatty acids. tolC-phoA fusions were sensitive to fatty acids (particularly medium chain) and thus unable to grow, whereas the reduced growth rate of tsp-phoA fusions on oleate was apparently due to changes in the energized state of the outer membrane or inner membrane. tsp-phoA fusions transported the long-chain fatty acid oleate at only 50% of wild-type levels when cells were energized with 1 mM DL-lactate. Under conditions in which transport was measured in the absence of lactate, tsp-phoA fusion strains and wild-type strains had the same levels of oleate transport. The tsp+ clone pAZA500 was able to restore wild-type transport activity to the tsp-phoA strain under lactate-energized conditions. These results indicate that the periplasmic protein Tsp potentiates long-chain fatty acid transport.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3