Plasmid Evolution and Interaction between the Plasmid Addiction Stability Systems of Two Related Broad-Host-Range IncQ-Like Plasmids

Author:

Deane Shelly M.1,Rawlings Douglas E.1

Affiliation:

1. Department of Microbiology, University of Stellenbosch, Matieland 7602, South Africa

Abstract

ABSTRACT Plasmid pTC-F14 contains a plasmid stability system called pas (plasmid addiction system), which consists of two proteins, a PasA antitoxin and a PasB toxin. This system is closely related to the pas of plasmid pTF-FC2 (81 and 72% amino acid identity for PasA and PasB, respectively) except that the pas of pTF-FC2 contains a third protein, PasC. As both pTC-F14 and pTF-FC2 are highly promiscuous broad-host-range plasmids isolated from bacteria that share a similar ecological niche, the plasmids are likely to encounter each other. We investigated the relative efficiencies of the two stability systems and whether they had evolved apart sufficiently for each pas to stabilize a plasmid in the presence of the other. The three-component pTF-FC2 pas was more efficient at stabilization of a heterologous tester plasmid than the two component pas of pTC-F14 in Escherichia coli host cells (±92% and ±60% after 100 generations, respectively). The PasA antidote of each pas was unable to neutralize the PasB toxin of the other plasmid. The pas proteins of each plasmid autoregulated their own expression as well as that of the pas of the other plasmid. The pas of pTF-FC2 was more effective at repressing the pas operon of pTC-F14 than the pas of pTC-F14 was able to repress itself or the pas of pTF-FC2. This increased efficiency was not due to the PasC of pTF-FC2. The effect of this stronger repression was that pTF-FC2 displaced pTC-F14 when the two plasmids were coresident in the same E. coli host cell. Plasmid curing resulted in the arrest of cell growth but did not cause cell death, and plasmid stability was not influenced by the E. coli mazEF genes.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3