SarS, a SarA Homolog Repressible by agr , Is an Activator of Protein A Synthesis in Staphylococcus aureus

Author:

Cheung Ambrose L.1,Schmidt Katherine1,Bateman Brian1,Manna Adhar C.1

Affiliation:

1. Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755

Abstract

ABSTRACT The expression of protein A ( spa ) is repressed by global regulatory loci sarA and agr . Although SarA may directly bind to the spa promoter to downregulate spa expression, the mechanism by which agr represses spa expression is not clearly understood. In searching for SarA homologs in the partially released genome, we found a SarA homolog, encoding a 250-amino-acid protein designated SarS, upstream of the spa gene. The expression of sarS was almost undetectable in parental strain RN6390 but was highly expressed in agr and sarA mutants, strains normally expressing high level of protein A. Interestingly, protein A expression was decreased in a sarS mutant as detected in an immunoblot but returned to near-parental levels in a complemented sarS mutant. Transcriptional fusion studies with a 158- and a 491-bp spa promoter fragment linked to the xylE reporter gene disclosed that the transcription of the spa promoter was also downregulated in the sarS mutant compared with the parental strain. Interestingly, the enhancement in spa expression in an agr mutant returned to a near-parental level in the agr sarS double mutant but not in the sarA sarS double mutant. Correlating with this divergent finding is the observation that enhanced sarS expression in an agr mutant was repressed by the sarA locus supplied in trans but not in a sarA mutant expressing RNAIII from a plasmid. Gel shift studies also revealed the specific binding of SarS to the 158-bp spa promoter. Taken together, these data indicated that the agr locus probably mediates spa repression by suppressing the transcription of sarS , an activator of spa expression. However, the pathway by which the sarA locus downregulates spa expression is sarS independent.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3