Epstein-Barr virus with heterogeneous DNA disrupts latency

Author:

Miller G,Rabson M,Heston L

Abstract

By cloning the HR-1 Burkitt lymphoma line, we previously uncovered two distinct biological variants of nontransforming Epstein-Barr virus (EBV). The most commonly cloned variant has a low rate of spontaneous viral synthesis and is unable to induce early antigen in Raji cells (EAI-). A rare variant spontaneously releases virus which is capable of inducing early antigen in Raji cells (EAI+). Since EAI- virus lacks heterogeneous DNA (het-) and EAI+ virus contains heterogeneous DNA (het+), we suggested that spontaneous viral synthesis and induction of early antigen are biological properties which correlate with the presence of het sequences. The present experiments provide three new lines of experimental evidence in favor of this hypothesis. (i) Revertant subclones of the EAI+ het+ variant which have lost the het DNA concomitantly lost EAI ability. Thus, het DNA is not stably associated with the cells as are the episomes. (ii) het DNA was acquired by two het- subclones of the HR-1 line after superinfection with EAI+ virus. After superinfection, these clones synthesized EAI+ het+ virus. Thus, het DNA may be maintained in the HR-1 line by cell-to-cell spread. (iii) Virus with het DNA activated full expression of endogenous latent EBV of the transforming phenotype in a line of immortalized neonatal lymphocytes designated X50-7. By use of restriction endonuclease polymorphisms unique to both the superinfecting and endogenous genomes, we show that the genome of the activated virus resembles that of the virus which was endogenous to X50-7 cells. This result suggests that het sequences result in transactivation of the latent EBV. het DNA had homology with EBV sequences which are not normally contiguous on the physical map of the genome. het DNA was always accompanied by the presence of DNA of nonheterogenous HR-1. Thus, het DNA is a form of "defective" EBV DNA. However, the biological effect of this defective DNA is to enhance rather than to interfere with EBV replication. This is a novel property of defective virus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3